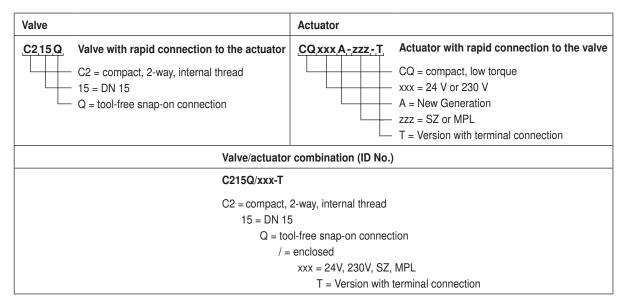


2-way zone valve QCV™ / ZoneTight™

Table of contents Introduction 2 2 Type key **2** 2 **Product features** Adjustable angle of rotation 2 kv setting Adaption 2 Operating range 3 Selection and dimensioning 4 Selection table

Calculation diagram

5

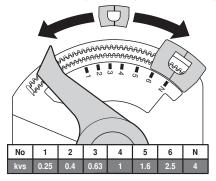

Introduction

The valve-actuator combination QCV[™] (= Quick Compact Valve) is a ZoneTight[™] Room & Zone Solution. The QCV, comprised of the C215Q rotary valve and the CQ.. actuators, has impressive properties:

- very compact and space-saving
- lightning-fast manually adjustable flow rates (k_v 0.25 to 4.5) at the actuator CQ..
- no energy loss thanks to air bubble tightness of the rotary valve C215Q
- rotary valve protected against soiling and force-fit thanks to friction-locked valve-actuator connection
- snap-on connection (without tools)

Type key

QCVTM (= Quick Compact Valve) for Room & Zone Solutions



Product features

Adjustable angle of rotation

The rotary actuator can be changed in 2.5° increments with the use of a clip. This is used to set the k_{v} value (maximum flow of the valve).

k_v setting Remove end stop clip and place at desired position (without end stop clip k_{vs} = 4.5 m³/h).

Push-button
Press button: Triggers angle
of rotation adaptation followed
by standard mode

Adaption

When the supply voltage is switched on for the first time, i.e. at the time of commissioning, the CQ24A-SZ(-T) and CQ24A-MPL(-T) actuators with modulating control carry out an adaption.

						_	_	-		
	No.	1	2	3	4	5	6	N 2)	1)	
	k _v	0.25	0.4	0.63	1	1.6	2.5	4	4.5	

¹⁾ without end stop clip

²⁾ Factory setting

Product features

Operating range

The ball valve is known to have an operating range in its direction of opening of $15^{\circ}.90^{\circ}$ as a result of its design, which means that the air tight range with the ball valve is at 15° . A hysteresis of 4° also obtains as a result of the design, which means that the ball valve is not air bubble tight in the direction of closing until it reaches 11° .

At the smallest k_v value that can be set (0.25), the angle of rotation of the ball valve is still 30°. This means that the actuator adapts to the angle 0 ... 30° (k_v = 0.25), 15° of which is in the air tight range, meaning 50% at this flow value setting. The actuator has the range 0.5 ... 10 V (for 0 ... 90°). This means the operating range of the valve is between 5.5 and 10 V. The running time of the actuator is 90 s / 90°, i.e. this results in a running time of 30 s for the 30° when k_v is 0.25.

The operating ranges of the valves with the respective kv values are:

Modulating control actuators								
Position No. CQactuator	Setting k _v value completely open position at [°]		Combination operating range in the direction of opening [V]	Effective running time [s]	Number of control steps			
1	0.25	30	5.5 10	30	60			
2	0.4	36	4.5 10	36	73			
3	0.63	43	4.0 10	43	80			
4	1	51	3.5 10	51	86			
5	1.6	61	3.0 10	61	93			
6	2.5	71	2.5 10	71	100			
N	4	80	2.0 10	80	107			
1)	4.5	90	1.6 10	90	112			

¹⁾ without end stop clip

Calculation of actuator control steps:

- Operating range (e.g. $5.5 \dots 10 \text{ V}$) 10 V - 5.5 V = 4.5 V- Response sensitivity: 75 mV = 0.075 V- Actuator control steps: 4.5 V / 0.075 V = 60 steps

Opening limit angle (tight - not tight): approx. 15° in the direction of opening

Hysteresis combination: 3.5 ... 4°

Closing limit angle (not tight – tight): approx. 11° in closing direction

Running time of actuators: 90 s / 90°

Recommendation for the smallest k_v values (0.25 ... 0.63):

- The QCV should not be used with a P controller (persistent control deviation)
- The QCV should be used only in a closed control loop with PI or PID control
- In case of doubt, use the QCV only as an open-close unit

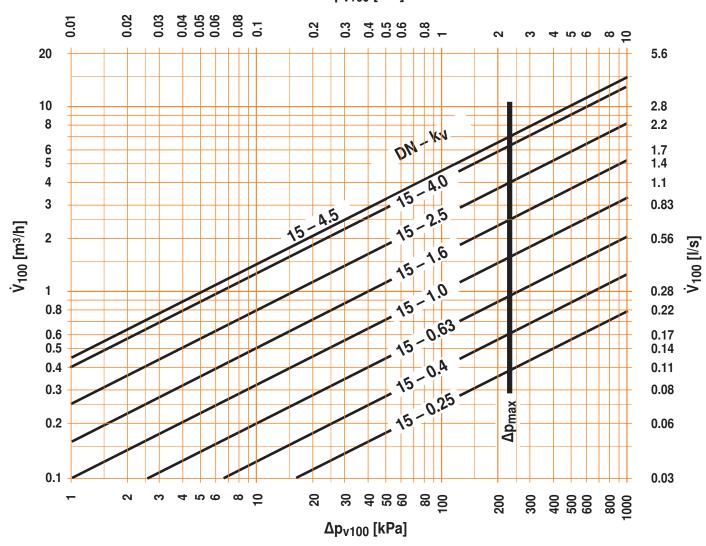
Selection table

Permissible working pressure ps	1000 kPa	
Max. differential pressure Δp _{max}	230 kPa	
Internal thread	ISO 7-1	
Medium temperature	6 80°C	

					Actuator				
Valve type	Valve design	Valve- characteristic curve	DN	k _v	Position No. CQactuator	CQ24A-SZ(-T)	CQ24A(-T)	CQ230A(-T)	CQ24A-MPL(-T)
		↑ K _V H	15	0.25	1				
				0.4	2				
				0.63	3				
C215Q				1	4				
				1.6	5				
				2.5	6				
				4	N				
				4.5	1)				

¹⁾ without end stop clip

Calculation diagram for 2-way zone valve C215Q


Application

These characterised control valves are used in closed cold and hot water systems for modulating water-side control of air treatment and heating plants.

Media Cold and hot water, water with glycol up to max. 50% vol.

Media temperatures 6 ... 80 ° C

Δp_{v100} [bar]

—— Δp_{max}

Maximum permitted differential pressure for long service life across control path A – AB, with reference to the whole opening range.

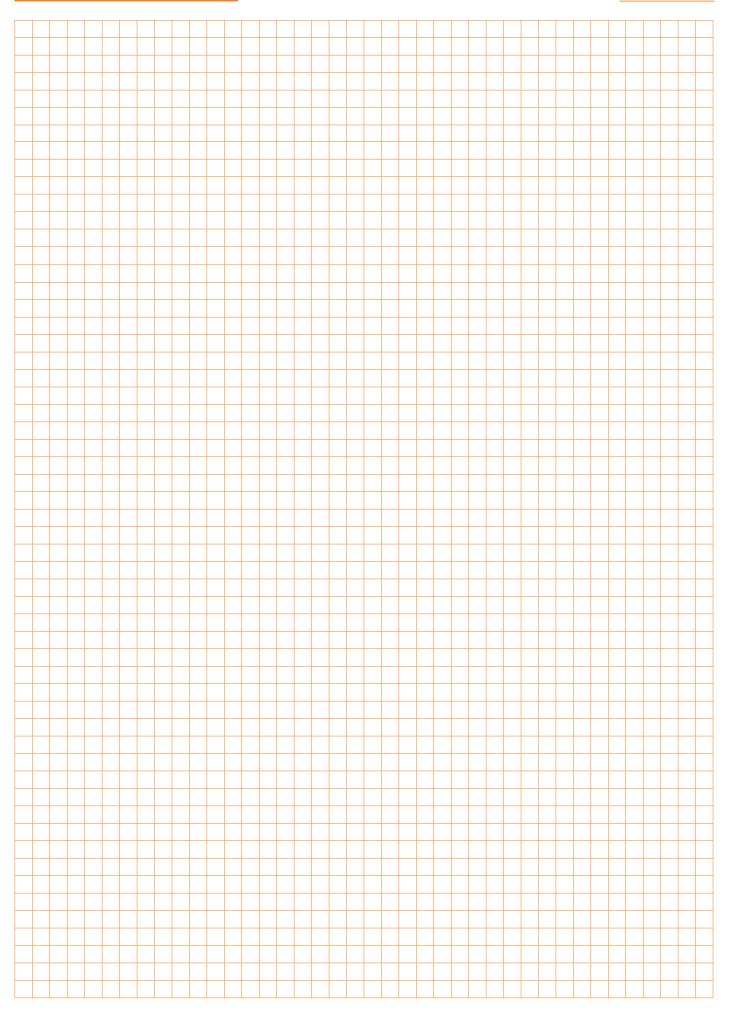
 Δp_{v100}

Differential pressure for ball valve opened up to k_{V} value setting

. Vann

Nominal flow rate with Δp_{v100}

Formula $k_v = \frac{v}{v}$


 $=\frac{100}{\sqrt{\frac{\Delta p_{v100}}{100}}}$

 $\begin{array}{ll} k_{v} & [m^{3}/h] \\ \dot{V}_{100} & [m^{3}/h] \\ \Delta p_{v100} & [kPa] \end{array}$

All-inclusive.

Belimo Europe

BELIMO Automation AG Brunnenbachstrasse 1 CH-8340 Hinwil, Switzerland

Tel. +41 43 843 61 11 Fax. +41 43 843 62 68 info@belimo.ch www.belimo.ch

