Notes on installation, direction of flow and commissioning

Specified directions of flow

kv to y y Characterized control valves	A-AB open	A-AB closed	2-way R2
	A-AB open	A-AB closed	3-way R3
kv h Y	A-AB open	A-AB closed	2-way R2
Open-close ball valves	A-AB open	A-AB closed	3-way R3
Stem position corresponding to ball valve flow direction		A-AB closed	For 2-way and
Actuator position corresponding to ball valve flow direction	Actuator 100%	Actuator 0% A-AB closed	3-way ball valves

Flow characteristics of characterized control valves

2-way

The flow characteristic is equal-percentage, with a characteristic factor of n(ep) 3.2 or 3.9. This ensures stable control behavior in the elevated part-load range. In the lower part of the opening range between 0 and 30% working range the characteristic is linear. This ensures excellent control behavior in the lower part-load range too. The working range between 0 and 100% corresponds to an angle of rotation between 15 and 85°.

Between 0 and 15° angle of rotation the characterized control valves function as tight-sealing shut-off devices.

3-way

The characteristic of control path A–AB is the same as that for 2-way characterized control valves. The bypass flow rate (B–AB) is 70% of the k_{vs} value of the control path (A–AB). The bypass has a linear characteristic.

Note:

Owing to its ball design, the 3-way characterized control valve is only partially suitable for conventional supply temperature control systems. It is therefore advisable to design this kind of temperature control system as a double mixing circuit (see diagram below). There are no restrictions on mixing circuits for air heaters or injection circuits.

